
Online Radio Environment Map Creation via UAV
Vision for Aerial Networks

Abstract—Radio environment maps provide a comprehensive
spatial view of the wireless channel and are especially useful
in on-demand UAV wireless networks where operators are not
afforded the typical time spent planning base station deployments
(e.g. emergency response). Equipped with an accurate radio
environment map, a mobile UAV can quickly locate to an optimal
location to serve users on the ground. Machine learning has
recently been proposed as a tool to create radio environment
maps from satellite images of the target environment. However,
the highly dynamic nature that precipitates most on-demand
aerial network deployments likely renders the satellite image data
available for the environment to be inaccurate. In this paper we
present, OREMAN, a hybrid offline-online system for aerial radio
environment map creation which leverages a common sensing
modality present on most UAVs: visual cameras. OREMAN
combines a suite of off-line trained neural network models
with an adaptive trajectory planning algorithm to iteratively
predict/refine the REM and estimate the most valuable trajectory
locations. By using UAV vision, OREMAN arrives at a highly
accurate map much faster and with fewer measurements than
other approaches, and is very effective even in scenarios where
no prior environmental knowledge is available.

I. INTRODUCTION

The growing impact of climate change through increased
frequency of natural disasters has stressed the importance of
on-demand mobile connectivity for public safety missions,
when terrestrial infrastructure is compromised or unavailable.
Indeed, on-demand aerial mobile networks (non-terrestrial
networks [1]), where the base stations are hosted on UAVs,
is considered to be an integral component of 5G’s broader
vision under “safe and smarter cities” for providing commu-
nication and sensing services. While network operators spend
significant time and resources in planning the deployment of
terrestrial base stations (BS), this is not feasible for UAV-based
deployments that are often on-demand. With UAVs having
limited flight time, they must position themselves in an ap-
propriate location as quickly as possible to provide optimized
connectivity to clients (user equipment, UEs), potentially
without the benefit of prior knowledge of the environment or
the UE locations. Creating an aerial radio environment map
(REM, e.g. Figure 1) on-demand that captures the channel
quality (e.g. path loss) for various UE locations on the ground
from various locations in the sky would be a game-changer
for our connectivity vision. With an aerial REM, the problem
of finding the optimal UAV location for connectivity becomes
a straight-forward one.

Constructing REMs for terrestrial networks has been an
important problem of the last decade [2]–[7] owing to its
numerous applications in cellular network planning and de-
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Fig. 1. a) Example building height map and UE location (red dot) and b) the
corresponding REM showing the received power at a UAV located at various
locations at a given altitude.

ployment. Several approaches exist for REM creation: Tradi-
tional methods can be classified as either model-based or data-
driven. The model-based methods include stochastic models
and physics-based simulations such as ray-tracing. The input
to such methods is a representation of the environment which
can range from a statistical description (as is the case in
stochastic models) or a full geometric model. Alternatively,
data-driven methods such as Kriging [8] rely on interpolating
a set of known values. The samples can be acquired passively,
e.g. through normal network operation, or actively through
a method such as drive-testing. Recently, machine learning
(ML) has been proposed as a promising solution. In this
approach, deep neural networks (DNN) are trained to predict
the REM directly from a set of inputs that can include either
an environmental representation, RF samples, or both.

There are several challenges that are unique to creating
aerial vs. terrestrial REMs: (i) dimension: The mobility of the
UAV makes the aerial REM high dimensional. In the terrestrial
case, in which the BS is fixed, the REM is only indexed by
the UE location. In an aerial scenario, REM is indexed both
by the UAV and UE locations. (ii) Air-to-Ground channel:
Compared to terrestrial ground-to- ground (GtG) channels, the
air-to-ground (AtG) channel has different properties; namely,
the impact of buildings (particularly their height) on the
channel is different [9]. (iii) time-criticality: Since the UAV
has limited resources, any time spent collecting data to create
an accurate REM rather than carrying out the connectivity
mission must be minimized. While the UAV’s mobility allows
it to sample the environment, care must be taken to intelli-
gently plan and manage an efficient measurement process. (iv)
insufficient/inaccurate data: On-demand deployments, where
UAVs are most likely to be utilized, must cope with missing
environment data (e.g. from disasters), which significantly
impacts the utility of REM constructed on inaccurate data.



Thus, existing approaches that work with complete, accurate
data for offline prediction and/or focus only on terrestrial GtG
REMs are unable to cater to aerial environments. To this end,
we propose OREMAN (Online REM for Aerial Networks):
a novel, first-of-its-kind hybrid approach that brings together
both offline neural network models and online, adaptive, multi-
modal algorithms for fast REM creation in on-demand aerial
deployments. OREMAN is driven by the observation that
neither offline nor online approaches are sufficient in isolation
for our target environment: While offline satellite images can
be used for REM creation [3], [10], its accuracy is heavily
impacted by varying degrees of missing information (as much
as 13 dB as we shown in Section V-B) in practical applications
(e.g. public safety: a few downed tall buildings after a disas-
ter; defense: lack of any environment information in tactical
deployments, etc.). On the other hand, online algorithms that
adapt to only RF measurements, will incur a high (flying) cost
to visit a sufficient number of measurement locations, so as
to deliver good REM accuracy, not to mention the need to
continuously adapt to UE dynamics. Given the limited time-
scales of UAV missions, this cost is often unacceptable.

OREMAN is the first online REM creation system which
leverages the UAV’s ability to “see” (through a widely avail-
able camera sensor) to augment its RF measurements and
intelligently optimize both the offline and online processes.
Incorporating vision allows OREMAN to significantly reduce
the time needed to create an accurate aerial REM by: i)
correcting any errors in the offline environmental data; and ii)
providing a means to learn areas of the map without having
to physically visit them to capture an RF sample.

Specifically, OREMAN utilizes encoder-decoder neural net-
work models that leverages environment information (includ-
ing the location and heights of the buildings, delivered by
processing the camera images) along with the UE locations
and a set of RF measurements to the UEs to predict not just the
aerial REM from a given UAV altitude, but also the uncertainty
in both the RF and corresponding building maps. A key
differentiating aspect of OREMAN is that its online algorithm
leverages both the uncertainty information of the RF and
building maps output by the models to determine the important
regions of the environment that need to be prioritized/sampled.
This joint uncertainty is then used to devise an intelligent
trajectory that maximizes the information utility (for RF and
vision) while also incorporating an exploratory reward for
unseen regions, so as to minimize the time needed to improve
the REM. Online RF and camera measurements are used to
update OREMAN’s knowledge of the physical environment
and iteratively plan the next measurement trajectory. Note
that OREMAN’s REM model at the end of the measurement
period can be used to predict the REM for any UE location
in the environment (even new UEs for which we have no RF
samples), thus the measurement phase is a one-time overhead
at the start of the mission and is not impacted by UE dynamics.

We show that the impact of incomplete environment infor-
mation on an offline-only system can be well over 10 dB of
error. By using prior UAV REM creation systems that rely on

just RF samples to improve the REM prediction, one can only
reduce the error by 0.7 dB/min on average (assuming a UAV
speed of 5 m/s). By contrast, OREMAN, which incorporates
UAV vision into the prediction and planning phases of its
online system, doubles this rate to 1.5 dB/min—an 8 dB im-
provement in just over 5 minutes of measurements compared
to the initial offline prediction. The rate is amplified/tripled
to 2.1 dB/min, a 12 dB overall gain, in completely unseen
locations in which we have no prior environment information.

The contributions of this work are summarized as follows:
• We introduce the concept of using UAV vision as an

additional sensor in online aerial REM creation systems.
The camera data is used both to update the data used by
the pre-trained REM prediction model and to drive the
online measurement collection.

• To address environment data inaccuracy/incompleteness,
OREMAN designs a DNN trained to predict the likelihood
of missing buildings given the current seen buildings, the
UE location, and the current set of RF samples.

• We propose using both model-predicted building and RF
uncertainty, as well as an exploration incentive to plan
efficient measurement trajectories designed to maximize
the REM error reduction in the least amount of time.

• We have created a large dataset of over 25,000 examples
of the AtG channel in multiple environments each with
multiple UE locations used for training. The dataset and
dataset creation pipeline will be made public.

II. RELATED WORK

There are three traditional methods for creating a REM,
which exhibit a trade-off between accuracy and time. Stochas-
tic modeling (such as those provided by the 3GPP specifica-
tion) is least accurate (or rather least specific) since it is a
model of the radio environment rather than an explicit map.
The benefit of using a model is that it produces results instanta-
neously. Physics based simulation, e.g. ray-tracing computes
the wireless channel based on Maxwell’s equations. In ray-
tracing software, e.g. Remcom Wireless Insite1, a 3D model
of the desired environment, along with transmitter and reciever
locations are specified. Then, the wireless channel is calculated
by “shooting bouncing rays” from the transmitter that interact
with the environment via reflection, diffraction, and diffusion
before ultimately arriving at the receiving nodes. This method
has a high compute complexity and takes a significant amount
of time to compute the REM. Finally, drive testing is the prac-
tice of collecting measurements from a particular environment
and is often paired with stochastic modeling as a means to
fill in the gaps between the measurement locations and the
remaining user locations. This is ultimately the most accurate
for a specific site, but has, by far, the highest operational and
cost complexity [11].

There have been many recent works utilizing ML to predict
REMs [2]–[7], [12], [13], including a recent survey of the
field [6] and even a ML style challenge [14]. Though the

1https://www.remcom.com/wireless-insite-em-propagation-applications



exact scenarios, datasets, and applications vary, most attempt
to train a model to learn the relationship between the radio and
physical environment (represented via images or parameters)
in an offline terrestrial setting assuming complete information.

We will discuss three relevant and representative works:
[4] Uses environment features and “expert-knowledge” (i.e.
the calculated distance based path-loss) to predict the path
loss between a fixed terrestrial transmitter location and a
single point in the environment. This one-to-one approach is
not scalable to generate full REMs quickly. [2]’s architecture
employs two neural networks (back-to-back) to predict the
device to device path loss over an entire area (i.e. one-to-many
prediction), where the second network incorporates samples
from the ground truth REM to refine the prediction. However,
they do not consider the online version of the problem and
how to acquire such measurements. [12], the closest to ours,
develops two models: one which uses environment features
and RF samples to do REM creation and another to predict
the residual between the REM prediction and ground truth.
The latter is then used to plan a trajectory to collect more
measurements. However, environment features are assumed to
be known completely and a priori. While OREMAN shares
some similarities, it can be distinguished in several ways:

1) We specifically focus on the air-to-ground scenario,
where the difference between the environment map
(buildings) and the aerial REM is more pronounced
(compared to terrestrial REM) and scalability is impor-
tant because of the dimensionality of the problem.

2) We do not assume complete (or any) information about
the environment as is the case in practice. We leverage
the UAV’s ability (equipped with a vision system)to
“see” the true environment to improve both the predic-
tion accuracy and reduce the time needed to achieve it
online compared to RF measurements alone.

3) We consider the application of an aerial base-station in
which the UAV must serve multiple UEs simultaneously.
Our goal is thus “many-to-many” REM creation, and
we demonstrate how our vision-aided trajectory planning
serves this mission.

III. PROBLEM ILLUSTRATION AND FORMALIZATION

Consider the following illustrating scenario: A natural disas-
ter has damaged the existing wireless infrastructure in a small
town. Emergency responders would like to set up an aerial 5G
network to coordinate their response with a UAV acting as an
aerial BS. The responders (UEs) are mobile, but their locations
are known via GPS (or 5G positioning). Satellite images are
available for the area, but due to the disaster, some of the
buildings have been knocked down, rendering the images only
partially accurate.

We argue that these constraints—prior building informa-
tion being inaccurate or incomplete, and time-criticality—
are realistic for many on-demand network scenarios such as
the one described above. Furthermore, these scenarios are
significantly different from terrestrial network deployment in
which the network operator would have time to accurately

map the environment, but would not be able to make online
measurements in a manner a UAV-based system would.

The UAV must position itself, as quickly as possible, in a
location that maximizes the received signal strength between
itself and all of the UEs. It must do this fast both because the
UAV has a limited flight-time budget and because of the time-
sensitive nature of the mission. Because the UEs are mobile,
and new UEs may appear in the area, the optimal UAV position
is also dynamic, further emphasizing the need to position itself
quickly. An accurate REM would make the solution to the
positioning problem a straight-forward lookup.

Ultimately, our goal is to arrive at the most accurate REM,
so that we may optimize the UAV position. However, because
of the inaccuracies in the knowledge of the true environment,
previously proposed offline REM prediction models are not
enough to achieve the desired accuracy. To improve the accu-
racy we require an online process. Now the objective becomes
to design a measurement collection process that maximizes
the amount we can improve the REM with respect to the
offline baseline, in a limited time frame. Because it would
be impossible to design this optimal trajectory given the initial
state of information, the measurement campaign is divided into
multiple epochs, each of which must be designed inteligently
to effectively use all UAV sensing modes: vision in addition
to RF measurement. If, in each epoch, we maximize the REM
improvement per unit time (dB/s), which we will refer to as the
“time-to-accuracy” (TtA), we would accomplish our ultimate
goal of maximizing the REM accuracy at the completion of
all measurements.

Before providing the details of OREMAN let us formally
define the various variables used and the objective functions
serving our goal.

A. Formalization

Let the area of interest be square with side length L meters.
Within the area of interest, there are NB buildings of various
shapes and heights. We represent this environment, via a height
map B similar to [3]. B is an M ×M image (with resolution
L/M m/pixel) representing a top-down aerial view of the
area. The pixel values of B represent the height of any portion
of the building at the corresponding location. One could think
of B as a “2.5D” image since it encodes 3D information about
the buildings through the pixel locations and their values. We
represent the UE location by X , a 2D binary image the same
dimensions as B that is all 0s except for the pixel containing
the UE, which is set to 1. In our scenario, the UE is the
transmitting node.

For a given environment and UE location, there is exactly
one REM2, P , an N ×N image that represents the received
power of the UAV at the corresponding aerial locations at a
single height. While P represents the same geographical area
as B and X , we do not require it to be the same size, i.e. P
may have a different resolution (i.e. L/N m/pixel) than B and

2This is not true in reverse: given the UE location, there are multiple
environments that result in the same REM. This makes the task of inferring
the building map from the REM much harder.
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Fig. 2. OREMAN overview. The ground truth REM and building map are shown on the left. At time t0 we begin with a single RF measurement, a known
UE location, and a partially incorrect map. OREMAN then predicts the REM and an estimation of the uncertainty in both the RF prediction and the known
buildings. It uses these to pick a measurement target (TS), plan a trajectory (PP). It then flies the trajectory, taking RF measurements and updating the building
map as it flies. It uses this new information to make another set of predictions at time t1 and repeats the process.

X . Finally, we define P̃ and B̃ as the measured or sampled
(incomplete) versions of the RF and building environment
respectively. They have the same shape as their respective
ground truth versions.

The main objective function is to produce an accurate REM
estimate, P̂ . The accuracy of a prediction is evaluated by the
root-mean-squared error

RMSE =

√√√√ 1

N2

∑
(x,y)∈P

(
[P ](x,y) − [P̂ ](x,y)

)2

(1)

that has the same units as P , which throughout our paper is
dBm, shortened to dB. The notation [P ](x,y) indicates the pixel
value in the x-th column and y-th row of the image P .

Towards maximizing the utility, namely accuracy of P̃ at
the end of the measurement period, the per-epoch objective
is to maximize the marginal utility, namely time-to-accuracy
(TtA), which is defined as the rate of error reduction in REM
prediction per unit time period. Let a UAV trajectory, ρ, be a
length-T sequence of steps along the pixels of P in an epoch.

ρ ≜ {(s(0)x , s(0)y ), (s(1)x , s(1)y ), . . . , (s(T )
x , s(T )

y )} (2)

where (s
(0)
x , s

(0)
y ) is the location of the UAV at the start of the

trajectory. We allow a step (s
(t+1)
x , s

(t+1)
y ) to be any of the

8-adjacent pixels to the current location (s
(t)
x , s

(t)
y ), thus the

average UAV step length (accounting for diagonal movement)
is

l =
L

2N
(1 +

√
2) m/step. (3)

If the UAV moves at a speed, ν ms−1, then the time, τ , it
takes to complete the average T-step ρ is given by

τ =
l

ν
T seconds. (4)

If after completing ρ the RMSE in the REM prediction is
reduced by ∆ dB, then the TtA is ∆/τ dB/s for the trajectory.

IV. SYSTEM DESIGN

We now present OREMAN, depicted in Figure 2, a first-
of-its-kind on-line, adaptive aerial REM creation system for
vision capable UAVs as a solution to the problem described
in Section III. OREMAN consists of two iterative phases:
prediction and planning. The outputs of each phase is used
as the inputs of the other, iterating one after another to drive
the error in the REM prediction as low as possible, and as
quickly as possible.

In the prediction phase, at some time/epoch t, a suite of
three DNN models use the previously taken RF samples till the
epoch, current P̃ (t), the currently known building map B̃(t),
and the UE location X to predict/refine the REM, P̂ (t) as well
as two uncertainty maps U

(t)
P and U

(t)
B which represent the

uncertainty in the predicted RF map and the known building
map, respectively. The three models used in the planning phase
are pre-trained DNNs described in detail in Section IV-A.

The purpose of fP is to predict the most accurate REM
possible given the data, which is one of the objectives of
OREMAN. The uncertainty models contribute to the per-epoch
objective, TtA, by providing valuable information to the next
phase. While employing a model to predict RF uncertainty
and using it to plan a trajectory has been considered recently
[12], this is not sufficient for practical deployments, where
building information may be incorrect, partially available or
even completely unavailable. Hence, we have developed an
additional model fUB

to predict the uncertainty in the current
building map, i.e. missing buildings, and incorporate it into
trajectory planning as well.

These uncertainty maps, as well as the current location of
the UAV (s

(t)
x , s

(t)
y ) are fed into the next phase: planning.

Planning itself has two components, Target Selection (TS)
and Path Planning (PP). The output of planning is a trajectory
for the next epoch, ρ(t+1). The TS and PP components are
designed to maximize the amount of information gained over
ρ while ensuring that information is collected as quickly and



efficiently as possible. We detail the path planning components
in Section IV-B.

The RF samples taken and buildings seen by the UAV
camera along ρ(t+1) are used to update the values of P̃ (t+1)

and B̃(t+1). This data is then used to predict the REM and un-
certainty estimates for the next epoch, P̂ (t+1), U

(t+1)
P , U

(t+1)
B ,

and so on.
At the end of the measurement period, once the UAV has

predicted and refined a REM for each of the UEs (in parallel)
it wishes to serve, it can then aggregate the REMs by adding
them point-wise, and fly to the location that provides optimized
service and coverage to all UEs as determined by a desired
connectivity objective. As we will show, this is a one-time
online process. If the UEs move, or if new UEs enter the area,
OREMAN can predict accurate REM for the new UE location
without needing to collect new measurements and include this
REM in its UAV positioning calculation.

We now give a detailed description of the various compo-
nents of OREMAN mentioned above.

A. REM Prediction and Uncertainty Models

There are three DNN models involved in OREMAN: the
REM creator fP , the RF uncertainty estimator fUP

, and the
missing building predictor fUB

. With the exception of their
input layers and hyperparameters such as the overall size
(number of stages), depth (number of layers per stage) and
width (number of weights per layer), each of the models is
implemented as a U-Net style encoder-decoder DNN [15] with
ConvNext blocks [16].

From a ML perspective, we are attempting an image-to-
image task, namely (buildings, UE location, RF samples) →
REM. Thus, we have chosen to use two recent ML techniques
shown to be well suited to the task. The U-Net architecture,
originally developed for image segmentation, is a modified
encoder-decoder model, which is commonly used in many
image-to-image translation tasks. The “U” refers to the fact
that early layer output activations are concatenated directly
to those of later layers, which supports training. ConvNext,
the so called “[fully convolutional network] for the 2020s”,
is a fully convolutional architecture style inspired by the
performance and behavior of vision transformers. It has been
shown to be state-of-the art on a number of image-to-image
tasks. A ConvNext block contains three convolutional layers, a
depth-wise convolutional layer using a large kernel size (e.g.
7), an expanding 1x1 convolutional layer, and a 1x1 bottle-
neck layer. Layer Normalization follows the initial depth-wise
convolution, and the Gaussian Linear Unit (GeLU) activation
is used after the last layer. A skip connection adds the input
of the ConvNext to its output.

In the decoder of each model, the many inputs accepted by
a particular model are concatenated together and immediately
passed through a “stem”, which down samples the inputs
by 4. Then the data passes through the network in stages.
Each stage consists of one or more ConvNext blocks. The
output of each stage is fed forward via a skip connection to
the corresponding layer in the encoder. Between each stage

is a downsampling layer, which reduces the dimension by
2. Following the decoder, the data moves onto the encoder,
which is very similar to the decoder with upsampling blocks
replacing the downsampling.

The REM prediction model fP attempts to predict the
most accurate REM, P̂ given the current values of B̃ and
P̃ . The model is trained to minimize the mean-squared-error
loss (MSE) between the estimate and the ground truth:

P̂ = fP (P̃ , B̃,X), LfP = MSE(P, P̂ )

The RF uncertainty model fUP
attempts to estimate the

difference between current predicted REM P̂ and the ground
truth. This type of model is an approximation of the posterior
variance in REM prediction [12]. It is also trained using the
MSE loss:

UP = fUP
(P̃ , B̃,X, P̂ ), LfUP

= MSE(|P − P̂ |, UP )

A novel building uncertainty model fUB
is unique to ORE-

MAN. It leverages the UAV’s online camera input, and is
trained to predict the difference between B̃, the buildings
known to the UAV (either a priori or through measurements),
and the true building map B. In other words it predicts
the location and height of the missing buildings given the
current state, namely UB and will play a critical role in online
trajectory planning along with UP .

UB = fUB
(P̃ , B̃,X), LfUB

= MSE(B − B̃, UB)

Specific training performance is described in Section V-B.

B. Measurment Trajectory Planning

After OREMAN has predicted the REM and uncertainties,
the second phase of OREMAN is to plan a trajectory for
measurement collection in the next epoch. The trajectory
planning takes place in two steps: target selection (TS) and
path planning (PP). The points with the highest uncertainties
tend to be the most valuable in terms of their ability to reduce
the error in our REM creation. Indeed, this is the case since the
uncertainties approximate the residual in our RF prediction and
the building map. Thus, visiting locations having the highest
uncertainty will eliminate the largest sources of error affecting
our prediction.

1) Target Selection: We select a target point which maxi-
mizes a weighted sum of the uncertainties and an exploration
incentive da. The latter is defined to be the distance to the
target point from the current UAV location. The exploration
incentive is aimed to reward visiting unseen locations, which
is especially critical in scenarios with incomplete maps. By
selecting a target further away, we are guaranteed to “see”
more of the environment, thus learning more information. The
target selection is given by:

(t∗x, t
∗
y) = arg max

(tx,ty)
{β[UP ]x,y + (1− β)[Ub]x,y + δ[da]x,y}

(5)

Figure 3 illustrates five potential targets at calculated via
different values of β. The building map, RF uncertainty, and
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Fig. 3. Potential trajectory targets for different values of β when δ = 0.1
a) building height map b) RF uncertainty c) building uncertainty. The current
UAV location is shown by the green triangle.

building uncertainty are shown in a), b), and c), respectively.
By increasing β we incentivize planning a trajectory to areas
of high RF uncertainty as opposed to building uncertainty. For
example, β = 0.1 picks the location in the lower left corner
which has high estimated building uncertainty. A value of β =
0.9 chooses the location in the top of the map of maximum
UP (RF uncertainty) but minimal UB , while β = 0.5 picks a
point that balances the two.

2) Path Planning: Once the target location is selected, we
wish to maximize the information gained from the measure-
ment trajectory, but we want to do so efficiently to minimize
the TtA. In order to come up with the optimal trajectory,
we utilize efficient graph-based shortest path algorithms. We
first form a graph with nodes corresponding to the pixels in
our uncertainty maps. Nodes share a directed edge if their
corresponding pixels are 8-way adjacent, meaning nodes are
neighbors if their pixels share an edge or vertex. Each edge e
is weighted by a weighted sum of the inverse uncertainties of
the incoming node and the true distance between the locations
represented by the nodes, de. The inverse operation allows a
shortest path algorithm (e.g. Dijkstra’s), which minimizes the
total edge weight along the path, maximizes the uncertainty,
while the distance-based weight ensures that the path chosen
is not too long, balancing between exploration and TtA. The
selected path is given by:

ρ∗ = argmin
ρ

∑
(x,y)∈ρ

α
1

[UP ]x,y
+ (1− α)

1

[UB ]x,y
+ εde (6)

(a1) (b1) (c1)

α
0.0
0.25
0.5
0.75
1.0

ε
=

0
.0

(a2) (b2) (c2)

ε
=

0
.5

Fig. 4. Planned trajectories with different values of α and ε = 0 and 0.5. a)
building height map b) RF uncertainty c) Building uncertainty

Figure 4 shows how changing α and ε affect the overall
trajectory relative to the two uncertainty maps. The value of
ε is 0 in the top row and 0.5 in the bottom. Observe how
lower values of α take the UAV through higher values of RF
uncertainty compared to that of the buildings. By increasing
ε we encourage straighter, shorter paths. On the other hand,
reducing ε encourages exploration, allowing the UAV to see
more at the cost of a longer path.

3) Measurement Update: Upon the initial deployment of a
UAV to a new environment at some time t0, we assume that
each element of P̃ is set to its default value of −1 indicating
that the UAV has not taken a measurement at that location.
We also assume that in general B̃ ̸= B–some areas of B̃ may
be correct while others are not. In the worst case B̃ is entirely
0 (indicating no building information).

After the trajectory for t-th epoch, ρ(t), the measurement
images P̃ and B̃ are updated. The values of [P̃ ]x,y are
populated with samples from the true REM [P ]x,y if the index
(x, y) is in the trajectory.

[P̃ (t)]x,y ← [P ]x,y if (x, y) ∈ ρ(t) (7)

We assume the UAV is equipped with a downwards facing
camera with a field of view θ meters, i.e. the camera exposes
all buildings ± θ

2m in either direction from the UAV’s location.
We also assume the UAV’s vision system is capable of deter-
mining the heights of buildings. This is possible using either
a traditional quasi-stereographic imaging method identifying
key points in the image sequence as the UAV moves or by
using DNNs [17]–[19]. To update B̃, we define Πθ(x, y) to
be all of the points the camera exposes, when the location of
the UAV is at the point (x, y).

Πθ(x, y) ≜

[
x− θ

2
, x+

θ

2

]
×

[
y − θ

2
, y +

θ

2

]
Then the sampled building image becomes:

[B̃]x,y ← [B]x,y if (x, y) ∈ Πθ(sx, sy), ∀(sx, sy) ∈ ρ(t) (8)

Clearly from (7) and (8) we learn more about the environ-
ment from the camera than we do from an RF measurement.
This motivates the critical use of fUB

and UB in OREMAN’s
online process.

C. Handling Multiple UEs

A compelling reason for building REMs is to enable the
UAV to position itself in the best location to provide coverage
and service to multiple UEs on the ground in an on-demand
network scenario. OREMAN is equipped with features to
handle multiple UEs in both prediction and planning. First,
the fully convolutional architecture of the models naturally
allow them to predict multiple REMs by concatenating the
inputs along the batch dimension. During training, each batch
contains a random set of environments and UEs; however,
we can take advantage of this batch processing to produce
REMs and uncertainties for multiple UEs within the same
environment in parallel. Secondly, the trajectory planning is
done on a single set of RF and building uncertainty maps,



i.e. on a per UE basis. To aggregate planning with respect
to each of the UEs, we do so over time. This is possible
since the overall measurement phase is broken into multiple
epochs, each consisting of a target selection and path planning
components. Thus, for each epoch, we rotate the “anchor UE”
whose RF and building uncertainties are used to compute the
trajectory, allowing OREMAN to leverage the diversity of UE
locations in mapping the environment faster.

V. EVALUATION

A. Air-to-Ground Ground Truth Dataset

In order to train and evaluate OREMAN, we have created
a large dataset of air-to-ground channel data generated using
open source mapping tools and the ray-tracing software Wire-
lessInSite (WI) from RemCom. The dataset consists of 504
unique building maps of various types (e.g. urban, campus,
park, etc.) and 50 UE locations per map, for a total of 25,200
total unique REMs.

Each building map covers an area of L=512m2. The
building footprints and height information comes from Open-
StreetMaps3 (OSM). Building heights are clipped to 95m. The
OSM data can be converted into the ESRI shapefile format
which is directly importable into WI. The OSM data is also
rasterized at a resolution of 2m/px (M = 256) resulting in
the true building maps B like the one shown in Figure 2.

Once a building map is defined, UEs place randomly within
the map area outside of the building footprints at a height of
2m. Similarly, the potential UAV locations are defined over
the entire map area on a uniform N × N = 32 × 32 grid
with a spacing of 16m at a height of 100m above the ground.
This location information is imported into WI and the UE
information is similarly rasterized into X to be used by the
model.4 The building and location data are imported into WI
and ray-tracing is done using the parameters in Table I. WI
outputs many channel metrics for every Tx-Rx (UE-UAV) pair;
we are interested in the received power Pr. The power is
calculated by summing (taking into account both amplitude
and phase) all the multi-path components of the signal received
at the Rx. For a given UE there are 32 × 32 = 1024 power
values corresponding to each of the UAV locations forming
the ground-truth REM P .

This dataset, and the automated pipeline used to create it
(environment specification, OSM import, generating Tx-Rx
locations, creating WI setup files, and running WI) will be
published along with the paper.

Before the data is consumed by the model, each of B, X ,
and P must be preprocessed. The first step is to scale them
between 0 and 1. The height values in B are simply divided
by the maximum height of 95. P is first clipped from its full
range [−250, 0] dB to [−130,−30] dB before being shifted
and scaled. This approach is similar to that adopted in [2].

To train the models to cope with missing building data and
incorporate RF sample data, we develop sampling layers as

3https://www.openstreetmap.org/
4Note that since our model predicts the channel from one UE to all possible

UAV locations, the UAV raster is not included as a model input.

part of the preprocessing step. The RF sampling layer uni-
formly selects a number of points from P to include in P̃ . The
number can either be specified directly or chosen uniformly
at random in a specified range. Similarly for the buildings,
the sampling layer can remove a specified percentage of the
buildings, producing B̃. The sampling process acts as a natural
form of data augmentation. Note that these sampling layers
are only used during the offline training and testing of the
various DNNs. During online evaluation of OREMAN, P̃ and
B̃ are calculated based on the UAV trajectory and online
measurements as described by (7) and (8).

The dataset is split 90/10% for training and testing at the
environment level. This is done because within an environment
similar UE locations may (and should) produce similar REMs.
During evaluation, OREMAN is evaluated on environments it
has never seen before, which is the most realistic scenario
from a generalization standpoint, albeit missing in several prior
works.

TABLE I
WIRELESS INSITE RAY-TRACING PARAMETERS

fC 2484 MHz
PTX 30 dBm

Rx Noise Floor -250 dBm
Antenna Pattern Isotropic

Ray spacing 0.5◦

Maximum Reflections 4
Maximum Diffractions 1

B. Model Training and Evaluation

As mentioned in Section IV, each of the models is im-
plemented as a fully convolutional network using ConvNext
blocks and based on the U-Net architecture. The exact size
and shape of the network was fine-tuned through a heuristic
hyperparameter search. The size of each model as well as the
training parameters of each model are given in Table II.
Importance of building height for AtG models: We first
present results indicating that height maps are necessary for
predicting AtG REMs. Figure 5a shows the training and test
performance when providing two types of building maps. A
“binary” building map does not contain the height information;
the pixel values are either 0 or 1 depending on whether or
not a building occupies that location. Note that this is how
many previous models [2], [4], [12] designed for GtG channels
represent the environment. This is appropriate in terrestrial
scenarios because the presence of the building affects the
channel shadowing much more than its height. However,
in the AtG channel we have a much higher probability of
LOS [9] because of the extreme height difference between the
nodes. Thus shadowing is a function of both the buildings
location and its height relative to the locations of the Tx
and Rx. We find that both the overall performance, and the
gap between training and testing improves considerably when
height information is embedded into B.
Higher utility of building data: The primary insight of
OREMAN is that while both RF and building information



TABLE II
MODEL TRAINING PARAMETERS

Model fP fUP
fUB

Total Parameters 10M 10M 5M
Optimizer Adam

Learning Rate 1E-4
LR Schedule linear increase, cosine decay
LR warmpup 20 10

epochs 100 50
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Fig. 5. a) Building height information is necessary for predicting AtG rems.
b) The impact of the number of given RF samples and seen buildings on the
performance of the REM prediction model.

are valuable in predicting the REM, the marginal benefit
of increasing the amount of building data is higher than
that of acquiring more RF samples. This is illustrated in
Figure 5b, which shows the REM prediction error for different
levels of building and RF knowledge as quantified by the
percentage of buildings seen and the number RF samples
taken. Clearly, increasing the number of RF samples reduces
the REM prediction error, regardless of how many buildings
are missing. However, when the number of RF samples is
low, increasing the percentage of the buildings seen has a
significant effect.

Consider a scenario in which only 25% of the buildings
are known. This is not unlikely depending on the deployment
scenario. At initialization the RMSE is around 15 dB. Without
updating the map we need ∼100 RF samples to reduce the
error to ∼6 dB. If we assume one sample per UAV step
at a UAV speed of 5m/s, 100 steps would take around 5
minutes. On the other hand, if we can increase the number
of buildings seen from 25% to 75%, we could reduce the
error by the same amount with only 25 RF samples (1.25
minutes). Since building discovery can be done in fewer steps
than RF sampling, we could improve the TtA by including a
building discovery incentive when planning the measurement
trajectory. The next section illustrates how OREMAN does this
in practice.

C. Online Multi-Sensor Trajectory Planning

OREMAN in Action: An example of OREMAN in action
is shown in Figure 6 showing the initial state and the state
after an epoch. In the considered example, we assume that
OREMAN starts out with a map containing only 50% of

UE UAV visited plannedTargetFOV

(a) (b) (c) (c) (d)

(i)(h)(g)(f)(e)

Fig. 6. OREMAN simulation example. a) and e) show ground truth building
map and REM. b-d) on the top row show the known map, RF samples, the
predicted REM and the weighted uncertainties at time t = 0, respectively,
along with the location of the UE, UAV, and planned trajectory. f-i) on the
bottom row show the same after completing the planned trajectory at t = 1.
The completing the 25-step trajectory the REM RMSE drops from 15.1 →
10.8 dB.

the buildings in the true map. The uncertainty map shows
the weighted sum of the uncertainty matrices and exploration
incentive described in Eqn. 6 as well as the trajectory planned
according to IV-B2. After one epoch, B̃ and P̃ have been filled
with the collected data, and the predicted REM has improved
significantly from 15 to 10 dB RMSE.
Algorithm Comparison: We performed numerous simula-
tions like the one shown to compare the performance of
OREMAN with several baselines. The closest existing work
is [12], which does not update the perceived building map
B̃ during flight and plans trajectories only using UP . The
remaining approaches (variants of OREMAN) do update B̃ and
use the various combinations of UP , UB , and da (exploration
incentive), in their path planning algorithms. Our proposed
system OREMAN uses all three. We simulated the behavior
of each algorithm over various environments, UE locations,
initial UAV locations, and initial map states.

Unless otherwise stated, the weights α, β, ε, δ from the
target selection (5) and path planning (6) algorithms used by
OREMAN in the following results were 0.2, 0.2, 0.5, 0.1,
respectively. We assume that the UAV is equipped with a
camera with a 45◦ FOV; for a UAV at an altitude of 100 m,
this exposes an area of 81 m2, which corresponds to roughly
a 40× 40 pixel area in our building map.

Figure 7 shows the average TtA of the different REM
creation systems for a) partially known maps (where 50%
of the buildings are missing from the map) and b) initially
blank maps. The x-axis shows the number of UAV steps, i.e.
trajectory points, over time. There are several main takeaways
from these results: First, in a deployment with with inaccurate
a priori building data, utilizing UAV vision is critical for
producing the most accurate REM. This matches the offline
results shown in Figure 5b). Without updating the building
map with UAV vision data, the RF samples are unable to
overcome the discrepancy between the true building map, and
the one we have, initially. Second, RF-only planning (note
that B̃ is still updated) results in a higher TtA than the other



combinations, especially in the blank map scenario. In the
blank map scenario, after 100 steps, the RF only system has an
average RMSE of 12.8 dB; including the building uncertainty
as a criteria in the trajectory planning lowers the error to
9.9 in the same amount of time. OREMAN which includes
both building uncertainty and the distance-based exploration
incentive has reduced the error to 8.4 dB. That corresponds
to 2.1 dB/minute improvement in roughly 5 minutes of flight
time over prior art (no building update). The RF only plan is
nearly only half of that at 1.3 dB/minute.

Trajectory Alg.
No Building Update [12]
RF Only Plan

RF+B Plan
RF+d Plan
RF+B+d Plan (Proposed)
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Fig. 7. Comparison of different online REM creation systems when starting
with a) a partially known map (50% of buildings missing) and b) a completely
blank map. Our proposed OREMAN reduces the time to any desired level of
accuracy.

D. Multi-UE Coverage and Dynamics

To evaluate the multi-UE scenario, we run a simulation
in Figure 8, where at initialization, t0, there are four active
UEs (numbers 1-4, shown as blue dots) and 75% of the true
buildings are missing (e.g. due to outdated satellite data). The
true building map is shown in a) while the initially known
map is shown in b). Two, separate 100-step trajectories taken
by the UAVs equipped with the baseline system from [12]
and OREMAN are shown in c) and d), respectively along with
the final building map. Notice how OREMAN explores much
more of the area, uncovering nearly the entirety of the map (it
has seen 99% of the area), while the other system flies a very
compact trajectory in comparison since it is only incentivized
to reduce the RF uncertainty.

A key aspect of providing multi-UE coverage is being able
to respond appropriately to UE dynamics. Hence, at some
later time t1, after the UAV has completed its (100 step)
measurement campaign and established its position based on
the created REMs, four new UEs (5-8) arrive to the area at
the locations marked by red squares. The UAV has to update
its position quickly to optimize its coverage for the new larger
set. To do this it predicts 4 new REMs based on the known
environment and the locations of the new arrivals.

The RMSE at times t0 and t1 for the four initially active,
measured UEs as well as new, unmeasured UEs in the REMs
predicted by [12] and OREMAN are shown in Figure 9 a)
and b), respectively. Both systems are able improve the REM

meas. UE unmeas. UE UAV trajectory

(a) (b) (c) (d)

Fig. 8. a) True building map. b) Initial known map, 75% of buildings missing.
c) Overall trajectory for [12] which does not update the building map, plan a
trajectory based on building uncertainty. d) The overall trajectory planned by
OREMAN which uncovers 99% of the map via the UAV’s camera.

accuracy by roughly the same amount for the initial set of
UEs after flying their measurement campaigns. However, once
the new set of UEs arrive, OREMAN, which obtained an
updated/accurate map for the entire area is able to predict
more accurate REMs for the new UEs despite having no
measurements for them. The average RMSE in the REMs
predicted by OREMAN is 10.1 dB vs. 16.3 dB for the
other system, showcasing the effectiveness of its one-time
measurement campaign in handling UE dynamics.
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Fig. 9. The RMSE in the REMs predicted in a multi-UE scenario for a
blank initial starting map when using a) the [12]’s system and b) OREMAN.
OREMAN is able to improve the starting error for all, even unmeasured UEs.

VI. CONCLUSION

UAV based networks are a quickly growing part of next
generation networks, especially in dynamic environments such
as disaster recovery or defense applications. REMs are an
immensely useful tool for optimizing the location of the UAV
BS in these networks; however, because of the nature of the
deployment scenario, the complete, trustworthy environmental
information needed to create an accurate REM is not often
available. In this work we proposed OREMAN which allows
a camera-equipped UAV to use 1) offline-trained models to
predict the REM and 2) an online, adaptive algorithm to
plan the most useful measurement trajectory to maximize
improvement over offline prediction quickly for deployment.
We have shown that OREMAN out performs existing REM
creation systems in accuracy and TtA because of its unique
ability to leverage online vision updates of the system to
improve both REM prediction and trajectory planning. Future
work will consist of integrating OREMAN into a real system
to evaluate in practical deployments.
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