
Design and Analysis of Neural-Network-based,
Single-User Codes for Multiuser Channels

N. Cameron Matson, Dinesh Rajan, Josehp Camp
Department of Electrical and Computer Engineering, Southern Methodist University, Dallas, TX, USA

Email: {cmatson, rajand, and camp}@smu.edu

Abstract—Inspired by its success in other fields, there have
been many recent developments in the use of machine learning
and neural networks to enable multiuser communication and
to design efficient channel codes along with practical decoders.
However, there has been little attempt to combine the results
of these efforts. In this paper, for the first time, we present a
neural network autoencoder architecture to jointly address both
problems. The resulting codes designed by our simple and easy-
to-train neural network can have arbitrary rates, are comparable
to existing state-of-the-art neural network designed codes, and
are directly applicable in a multiuser context. We analyze these
single-user codes and characterize the design parameters which
affect their performance. We then show that these same single-
user codes can be used to operate close the maximum sum rate of
a K-user Gaussian multiple access channel (MAC) under various
SNR scenarios, without the need for retraining or learning a joint
code. This improved performance is achieved by introducing a
new iterative successive interference cancellation method (SIC)
that outperforms traditional onion-peeling.

Index Terms—machine learning, neural networks, autoencoder,
channel coding, multiple access channel

I. INTRODUCTION

Supporting multiple users simultaneously is a fundamental
challenge in a shared wireless medium. Numerous multi-
ple access schemes (such as TDMA/CDMA/OFDMA and
Aloha/CSMA) have been developed at various layers of the
protocol stack to solve this problem. In parallel to the devel-
opment of these multiuser schemes, significant research has
been done to develop optimal codes to transmit data from a
single user over the wireless channel. Examples of such codes
include the low-density parity check (LDPC), Reed-Solomon,
Turbo, and Polar code families. The objective of this paper is
to develop a family of arbitrary rate, single user codes using
ideas from neural networks that also have good performance
in a multiuser setting.

In recent years, there has been a flurry of interest in
using machine learning techniques to help solve wireless
communication problems. Several recent works [1]–[4] have
used neural networks to train joint encoders and decoders for
multiuser channels, specifically for the interference channel.
A modulation scheme for the two-user MIMO interference
channel was learned in [1]. An adaptive decoder predicted
interference patterns in [2]. The only work to consider more
than two users was [3] in which they learned an interference-
alignment scheme. In [4], they improved upon the previous
works by designing an encoder for the two-user channel that
works on long block lengths. In every case, the encoders and

decoders for each user were learned jointly, i.e., they were
optimized for a joint loss metric such as the average bit error
rate (BER) of all users.

In the case of single user codes, neural networks have
been used to learn novel modulation constellations [5]–[8],
to build good decoders for existing codes [9]–[11], and to
design entirely new codes by jointly training encoder and
decoder networks [12], [13]. In [12], they trained a pair of
neural networks with a Turbo-like architecture, including an
interleaver to increase the memory of the code showing that
it can approach state-of-the-art performance. They presented
the results for codes with rates of 1

3 and 1
2 , where these rates

were dictated by the neural-network structure rather than being
an arbitrary design parameter. A non-linear code based on
the Kronecker operation present in Reed-Muller codes was
presented in [13] and shown to outperform Reed-Muller and
Polar codes. Due to their similarity to Reed-Muller, these non-
linear codes also cannot be designed for arbitrary rates. In
both cases [12], [13], arbitrary rates may be achieved via
puncturing, but to the best of our knowledge, a systematic
study of the performance of punctured neural-network based
codes has not been done.

In contrast, our architecture is designed to be simple and
easy to train with the purpose of learning arbitrary rate codes.
This large family of single-user codes can be directly used on
multiuser channels without the need to design or learn a joint
code. The contributions of this paper are:

• We propose a simple neural network architecture, which
we call NN Code, for creating single-user codes, whose
performance are comparable to state-of-the-art codes. The
simplicity of the architecture allows codes to be easily
trained at arbitrary rates of the form k

n . We analyze these
codes’ performance as a function of the design parameters
of these networks, particularly the gap of the rate k

n to
capacity, C.

• Using codes generated by NN Code in a multiple access
channel, we can operate close to (within 1

n of) the corner
points of the MAC capacity region, maximizing the sum
rate. We show that our codes allow us to operate close to
this maximum sum rate regardless of the signal-to-noise
ratio (SNR) of each user.

• For the MAC, we introduce an iterative successive in-
terference cancellation (SIC) step along with the same
single-user decoders, which can decrease the BER of
individual users by up to 60% compared to traditional

onion-peeling decoding. This process enables the addition
of new users to the MAC with minimal effect on the
performance of existing users.

The remainder of this paper is structured as follows: In Sec-
tion II, we present the architecture for the neural network and
describe the training methodology and metrics. In Section III,
we describe our proposed SIC algorithm for the MAC. The
results for both single- and multiuser channels are shown in
Section IV, and we conclude in Section V.

II. SIMPLE ARBITRARY RATE NEURAL NETWORK CODES

In this section, we present the neural network architectures
used in this work and describe the network training method-
ology and performance metrics.

A. Single Rate Encoder/Decoder Architectures

The base neural network architecture of NN Code is shown
in Fig. 1 with details in Table I. The architecture is based
on autoencoder networks [9], [14] which consist of: (i) an
encoder network, which transforms the input into a lower-
dimensional representation, and (ii) a decoder network, which
reconstructs the original input. Autoencoders have been used
in computer vision and language processing tasks because of
their ability to reduce dimensionality. The main difference be-
tween these models and autoencoders used for communication
problems is the introduction of a noisy channel between the
encoder and decoder. We consider the additive white Gaussian
noise (AWGN) channel.

In our work, the encoder and decoder consist of multiple
layers of 1-D convolution layers followed by a single fully
connected layer. At the encoder, the input is a string of bits
of length kL. The input is reshaped to be L × k and then
passed through multiple convolutional layers. The convolution
operates over the “L” dimension, so L must be at least the size
of the convolution filter. We find that performance increases
by increasing L up to a point before plateauing. Each 1-D
convolutional layer is followed by a ReLu activation function.
The shape is preserved throughout each convolutional layer,
i.e., there is no spatial down/upsampling. The final layer is
fully-connected and has n nodes. Thus, the output has shape
L × n. The data is then passed through a learned power
normalization layer, which ensures that the output signal has
unit power. This is implemented via a Batch Normalization
[15] layer without the scaling and centering, a technique
borrowed from [12].

The architecture of the decoder is nearly identical to that
of the encoder. The differences are the input shape, which
matches the output of the encoder, and the final fully connected

Decoder
Y

b̂
X

Encoder
b

Z

BkL → RL×n RL×n → BkL

Fig. 1. Channel code autoencoder architecture.

TABLE I
NN CODE ENCODER ARCHITECTURE

Layer Name Output Shape

E
nc

od
er

Input kL× 1

Reshape L× k

ME layers
1-D conv. (kernel wE , FE filters)

L× k
ReLu

Fully Connected
L× n

Unit Power Normalization

D
ec

od
er

Input L× n

MD layers
1-D conv. (kernel wD , FD filters)

L× n
ReLu

Fully Connected
L× k

Sigmoid
Reshape kL× 1

layer which has k nodes and is followed by a logistic sigmoid
activation function. The logistic sigmoid, described by the
function f(x) = 1

1+e−x , takes a real value x as input and
produces a value between 0 and 1, which is commonly used
to represent a “bit probability”. Thus, the decoder network
takes as input an nL-length, real-valued signal and outputs
the probability of each of the original kL bits being a 1.

The rate, R, of the NN Code is the ratio of the lengths of the
input and outputs at the encoder: R = kL

nL = k
n . By adjusting

the values of k and n independently, we can create arbitrary
rate single-user codes. The free variable L allows to scale the
block length of the code without affecting the underlying rate.

B. Training Methodology and Metrics

During each feed-forward step, we generate a random binary
vector, b, kL-bits long and feed it through the encoder, which
generates a continuous-valued output signal, X ∈ RL×n,
with an average unit power constraint, 1

nL ||X||2F = 1, where
|| · ||F is the Frobenius norm. The encoder output then
passes through an AWGN channel layer, which adds ran-
dom noise Z ∼ N (0, N0I). These corrupted symbols then
pass through the decoder, which outputs a probability vector
b̂ = p(b). During training, vector b̂ along with the true bit
values, b, are used to compute the binary cross-entropy loss,∑kL

i bi log(b̂i)+ (1− bi) log(1− b̂i), which is used to update
the weights of the encoder and decoder networks via gradient
descent.

We follow many of the training insights from [12], specif-
ically training the encoder and decoder separately and using
a large batch size. However, unlike [12] in which they train
the encoder and decoder at different SNRs, since the coding
rate of our networks is a function of the SNR, we train both
the encoder and decoder at the test SNR. We also found no
benefit to training the decoder more than the encoder. Hence,
they are trained for an equal number of steps in each epoch.
The simplicity of the NN architecture makes them easy to
train. In this paper, we present the results of many networks
with a wide range of rates. On average, it takes less than an

hour to train these networks on an NVIDIA P100 GPU. A
summary of the network parameters can be found in Table II.

TABLE II
TRAINING PARAMETERS OF THE NETWORKS USED IN THIS PAPER.

Loss Binary Cross-Entropy
Encoder/Decoder params 3 layers, kernel size 3, 128 filters

Batch Size 500
Optimizer, init. learning rate Adam, 0.0001

Enc./Dec. Train steps per epoch 500
Block Length L 50

Number of epochs < 100
(Early stopping criteria) 10 non-decreasing epochs

The BER can be calculated from the predicted bit prob-
abilities as BER = 1

kL

∑kL
i

[
1(b̂i > 0.5) ̸= bi

]
, where 1 is

the indicator function. One of the primary objectives of this
architecture is to operate at the highest theoretical rate allowed
by the channel SNR. Thus, in addition to the BER, we also
quantify the “goodput”, which is computed as k

n (1 − BER).
This goodput metric captures the trade-off between pushing
more bits over the channel at the cost of more errors.

All of the results presented in Section IV are from net-
works created and trained in the aforementioned way. Unless
otherwise specified, the codes in use are designed, trained,
and tested at the maximum feasible rate, subject to the
integer constraints on k and n, and capacity of the channel.
Specifically, we first designate a value of n and an effective
SNR value. The effective SNR is simply P

N0
in the single user

scenario and represents the signal-to-interference-plus-noise
ratio (SINR) in the multiuser case as defined in Section III.
Then, we calculate the maximum value of k such that the
rate R = k

n < C(SNR), which implies k = ⌊nC(SNR)⌋.
Here, C(x) is defined as 0.5 log2(1 + x) and is the capacity
of the single user real Gaussian channel1. All of the rates and
goodputs are measured in bits per channel use (bpcu).

III. MULTIPLE ACCESS CHANNELS AND SUCCESSIVE
INTERFERENCE CANCELLATION MODEL

In this section, we first present the system model for the
Gaussian multiple access channel. Then, we describe the
traditional onion peeling method for achieving capacity, and
finally present a modified, iterative successive interference
cancellation (SIC) scheme to improve the performance when
using our neural network codes.

A. Multiple Access Channels

Consider a multiple access channel with K users. Let Xi

be the signal transmitted by user i ∈ {1...K} at each time
instant. The time index is not explicitly shown for simplicity.
The average transmit power for user i is denoted by Pi. The
received signal, Y , in this MAC is given by:

Y =
√

h1X1 +
√
h2X2 + · · ·+

√
hKXK + Z (1)

1For convenience, we consider real-valued channels.

At the receiver, the signal of each user, i, is scaled by a channel
with magnitude h2

i . The Z ∼ N (0, N0) is additive noise with
power N0.

For this channel, the capacity region is given by the K-tuple
of rates (R1, R2, . . . RK) that satisfy:∑

Ri < C

(∑
hiPi

N0

)
, i ⊆ {1 . . .K} (2)

Any rate-tuple (R1, . . . , RK) that satisfies these constraints is
achievable, i.e., there exists codes (with potentially asymptoti-
cally large block sizes) that allow for transmitting at these rates
and while ensuring an arbitrarily small probability of error.

B. Traditional SIC

One known method for achieving the capacity of the MAC
is the use of what’s called an onion peeling decoder. In this
decoding process, a first user is decoded while treating the
remaining users as noise. Once the first user is decoded, their
bits are re-encoded and subtracted from the original signal.
This procedure continues with each successive user, cancelling
out each one from the original signal. As long as each user
transmits at a rate below the single user capacity of their
effective channel, then this scheme achieves capacity.

In practice, the SIC proceeds as follows. Without loss of
generality, we order the users 1 . . .K in the reverse order in
which they are decoded, i.e., user K is decoded first, and
user 1 is decoded last. The rate for user i is then computed
as C(hiPi

N0+
∑

j<i hjPj
), where the argument to the capacity

function is the SINR for user i. With this transmission rate,
the signal of user K can be decoded (using the single user
decoder) since it is operating at a rate below the capacity
of the channel which treats the signal of all the other users
as noise. After successful decoding, the re-encoded signal of
user K can be subtracted from the received signal Y to obtain
the residual signal Y − X̂K . This decoding process continues
with the decoding of the other users.

C. Iterative SIC

In theory, since each ordered user is using a code below
the capacity of their effective channel, the receiver should be
able to decode each signal in order without errors. In practice,
our decoders are not perfect, meaning there is always some
error in decoding. Also, the codes themselves are not perfectly
Gaussian, meaning the interference is not Gaussian. Hence, we
may be inaccurately approximating each user’s capacity as that
of a single-user Gaussian channel, given their effective SINR.
The resulting error in decoding leads to an imperfect estimate
of the signal, i.e., X̂i ̸= Xi. Thus, there is residual error when
decoding subsequent users. To overcome this limitation, we
propose a modification to the SIC scheme in which we iterate
multiple times through each user’s decoder. The modified
procedure is described in Algorithm 1.

At the receiver, we first initialize all of the estimated signals,
X̂i to 0 (step 1). Then, we process the received signal for T
iterations (choosing T is discussed in Section IV-B), each time
removing the interfering signal estimates (step 4), estimating

the user’s bits (step 5), and re-estimating that user’s transmitted
signal (step 6). Note that in the first iteration, and the first user
we have

∑
j ̸=i X̂j = 0 =⇒ Ŷi = Y ; in other words, since the

estimates are initialized to 0, stopping after the first iteration
is equivalent to traditional SIC.

Algorithm 1 Generalized Iterative SIC

1: Initialize X̂i = 0,∀i
2: for t← 1, T do
3: for all users i do
4: Ŷi = Y −∑

j ̸=i X̂j

5: b̂i = Di(Ŷi)
6: X̂i = Ei(b̂i)
7: end for
8: end for

IV. NUMERICAL RESULTS

We trained our NN Code architecture with different values
of k, n, and SNR on single-user channels and then utilized
those codes in conjunction with SIC on MACs. In this section,
we first present the performance and characterize the behavior
of the NN Code for single-user channels. Then we demonstrate
the effectiveness of using these codes in multiuser channels.

A. Single User Results

1) Arbitrary Rate Goodput Performance: The primary ben-
efit of this architecture is its ability to operate at any rate. The
rate of the code is a function of the variables k and n rather
than that of the architecture of the neural network itself. Thus,
different rate codes can be learned for different SNR regimes.
The goodput metric helps capture the dual goals of sending
more bits over the channel with the fewest number of errors.
Fig. 2 shows the goodput for different NN Codes operating
“at capacity” for the given SNR as described in Section II-B
as well as the that of the two TruboAE codes from [12].

For n = 2, the goodput of both our code and TurboAE is
flat for all valid SNRs. The rate is the same (12) for both codes,
regardless of the SNR. Thus, any difference in the goodput is
due to differences in BER. For n = 3, the situation is similar
at low SNR, but when the SNR increases sufficiently, the NN
Code can increase its rate from 1

3 to 2
3 to take advantage of

the increased capacity of the channel by adjusting k.
An advantage of NN Code is its the ability to increase n

to allow the desired, fractional rate change with SNR. The
goodput curve for n = 30 demonstrates that, with sufficiently
large n, the goodput increases smoothly with SNR, which
minimizes the difference between the goodput and capacity.
Any family of codes, found via neural networks or otherwise,
that allows for arbitrary rates will be able to adjust the rate
with SNR. However, good codes of arbitrary rates may not
be available either through explicit construction or a method
such as puncturing, whereas the flexibility and simplicity of
NN Code makes it trivial to train codes of any rate.

−1 0 1 2 3

SNR (dB)

0.3

0.4

0.5

0.6

0.7

0.8

G
o
o
d

p
u

t

n=2

n=3

n=30

TurboAE 1/2

TurboAE 1/3

Capacity

Fig. 2. Goodput performance of arbitrary rate NN Codes vs. fixed rate
TurboAE [12]. The arbitrary rate allows NN Code to scale with SNR.

2) Characterization of Neural Network Codes: The BER
and goodput of the codes presented in this paper and the codes
they produce are determined by three parameters: n, k, and
the channel SNR.

The parameter n determines the granularity of the rates that
the NN Code can produce. As discussed above, a large value of
n is what enables the NN Code to scale the rate of the network
with the SNR of the channel, allowing codes arbitrarily close
to the capacity. The trade-off is that n also determines the size
of the neural network. A larger n results in a larger network,
which is harder to train. In general, for equal rates, a network
with a larger n will have a higher BER. Large n also allows us
to generate arbitrarily low rate codes, an important requirement
for use in the multiple access channel when the interference
can cause very low effective SNRs.

The second variable that determines the final BER of the
NN Code is the difference between the rate of the NN Code
and the capacity of the channel (i.e., the gap to capacity).
For a fixed value of n, we increase the gap to capacity by
reducing the rate (i.e., reducing k). By increasing the gap to
capacity, we reduce the BER. This relationship is present in
all channel codes: the code adds redundancy, and the amount
of redundancy depends on the desired error rate for a given
channel. Using the same code on a channel with a higher SNR
(i.e., a channel with larger capacity) lowers the error rate.

We can see the effect of the gap to capacity on BER clearly
in Fig. 3a, which shows the BER versus the gap to capacity
for different values of n at a fixed SNR of 1.5 dB. Some of
the points are marked with the corresponding value of k. This
effect is consistent across SNR as well. Fig. 3b shows the
BER versus k for the NN Code with n = 30 at four different
SNRs, showing that with a large n and small k, we can create
low rate codes that provide enough gap to achieve arbitrarily
small errors rates.

B. MAC Results

We now present the results of using our NN Code in a SIC
scheme to approach the capacity of the MAC. For each user in

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Gap to Capacity: C −R

10−4

10−3

10−2

10−1

B
E

R

1

1

7

7

13

19
25

31
37

n = 3

n = 5

n = 20

n = 60

(a)

05101520

k

10−4

10−3

10−2

10−1

B
E

R

SNR=-1.5, C=0.386

SNR= 0.0, C=0.500

SNR= 1.5, C=0.635

SNR= 3.0, C=0.791

(b)
Fig. 3. (a) BER of NN Codes at different gaps to capacity over a 1.5 dB channel. The gap is controlled via selection of k and n for a given channel SNR.
Each line is a different n and some sample values of k are included in the figure. (b) BER vs. k of different NN Codes with n = 30 at different SNRs.

the MAC, the codes are designed according to Section III, and
each of the users operate with single-user codes “at capacity”,
as described in Section II-B.

1) Iterative SIC: First, we demonstrate the effectiveness
of the modified SIC algorithm to reduce BER. Fig. 4 shows
the reduction in BER versus the number of iterations on both
a two- and three-user MAC. In this result, each user’s SNR
is 1.5 dB. In the two-user MAC, the user 2 BER improves
by roughly half after 50 iterations; while in the three-user
MAC, the user 3 BER decreases by 65% and the user 2 BER
by 45% from the initial value after one iteration (traditional
SIC). Across all SNR scenarios tested, in which each user’s
SNR ∈ {−1.5, 0, 1.5, 3}, the average BER improvement for
users 1 and 2 in the 2-MAC was 13% and 45%, respectively,
and 20%, 40%, 60% for users 1 through 3 in the 3-MAC.

The first-decoded user benefits the most in the iterative
scheme versus traditional SIC. Without iterations, the receiver
decodes the user K with the full interference of the other
users. During the following iterations, the receiver has reliable
estimates of the other users and can cancel them prior to
decoding user K. The effect is smaller for the other users since
they are initially decoded with some interference cancellation.
After a few iterations, the improvement in BER tapers off as
the receiver’s estimate of each user’s signal converges.

2) SIC MAC Results: We now present the results of the SIC
scheme with our NN Codes by comparing the final goodputs
after 50 SIC iterations with the capacity region of the two-
user MAC. Fig. 5a shows the two-user capacity region for a
symmetric MAC with SNR1 = SNR2 = 1.5dB, while Fig. 5b
shows an asymmetric scenario of (SNR1,SNR2) = (−1.5, 3).
In each figure, there are several quantities marked. Three
points marked with a black “*” on the boundary of the
pentagon achieve the maximum sum rate. Points “B” and
“D” can be achieved via SIC by decoding user 1 or user 2

0 20 40 60 80 100

Iteration

10−2

10−1

B
E

R

u1 3-MAC

u2 3-MAC

u3 3-MAC

u1 2-MAC

u2 2-MAC

Fig. 4. Performing multiple iterations of SIC improves BER for all users.

first, respectively. Point “C” can be achieved via time-sharing
between the two rate pairs. Each figure also shows (gray
pentagon) the actual code rate tuple (R1, R2), where Ri =

ki

ni

for the NN Code with n = 30. This operating point is
very close to the boundary because of the relatively large n.
Three green square markers represent the goodput of each user
operating at their respective single-user rate and the goodput
resulting between an even time-sharing between the two. Note
that the middle green marker corresponds to a TDMA scheme.
Finally, the red dots indicate the final goodput of the modified
SIC algorithm after 50 iterations.

The SIC scheme is clearly better than TDMA. Even if the
two users operate with zero errors at the individual single-user
capacities, their sum goodput is lower than that achieved by
the SIC scheme. Also, to maximize the sum goodput is it is
critical that the NN Codes operate at the highest rate possible,
which is only possible with large values of n and the freedom
to choose k, which is easily realized by NN Code.

0.0 0.5 1.0

R1, SNR1 = 1.5
(a)

0.0

0.2

0.4

0.6

0.8

1.0

R
2
,S

N
R

2
=

1
.5

D

B

C

Capacity

1-user GP

NN Code Rate k
n

2-user GP

Code Rate n = 3

2-user GP w/u3

0.0 0.5

R1, SNR1 = −1.5
(b)

0.0

0.2

0.4

0.6

0.8

1.0

R
2
,S

N
R

2
=

3
.0

D

B
C

Fig. 5. Two 2-User MAC capacity regions for different SNR regimes (a) sym-
metric: SNR1 = SNR2 = 1.5dB, (b) asymmetric: SNR1,2 = {−1.5, 3.0}.

Points “B” and “D” both maximize the sum rate of
users 1 and 2. In Fig. 5a, since each user has the same SNR,
there is no difference in operating at point “B” versus “D”.
In other words, the sum rate is the same whichever user is
decoded first. This symmetry is not necessarily the case when
the single-user SNRs differ, as in Fig. 5b. In this scenario,
the goodput at points “B” and “D” are 0.897 and 0.882,
respectively. This minor difference is due to the constraint that
the actual rate R needs to be a ratio of two integers (k, n),
while the capacity is, in general, an irrational number. While
the sum rates of each operational point is the same, 0.900 in
this case, the individual rates are different depending on which
user is decoded first, i.e., (R1, R2) = (0.133, 0.767) at “B”
and (0.367, 0.533) at “D”. Since the single-user performance
depends on both the rate and the effective SNR of the channel,
the individual and thus sum goodputs are different.

The small difference in the goodputs between operating near
“B” vs. “D” is because n is sufficiently large, which results
in a consistent gap to capacity for any SNR. With a smaller
n, the difference between “B” and “D” can be significant. For
example, Fig. 5b also shows (magenta pentagon) the actual
code rates for n = 3. Not only are the operating points
significantly further away from their corner points, but there
is no user 2 rate sufficiently low to operate at point “B.”

3) Scalability: In Fig. 5a, we have also plotted (blue
triangles) the two-user goodput pair of users 1 and 2 from the
three-user MAC when user 3 is at different SNRs. The inset
shows a zoomed-in view of the area around point “D”. Since
SNR1 and SNR2 are symmetrical, the sum goodput is the same
at both points “B” and “D”. Without user 3, the sum goodput is
0.896. With user 3, the sum goodput of users 1 and 2 decreases
slightly as SNR3 increases. At the lowest SNR, the reduction
in the two-user goodput was less than 1%. The maximum
reduction is only 3%. This demonstrates the ability of the SIC
scheme with the NN Code to scale to more than two users, all
while using single-user codes. Scaling to even larger numbers
will be studied in the future.

V. CONCLUSION

In this paper, we have have presented a simple neural
network architecture that allows the creation of arbitrary rate
single-user channel codes. The flexibility of the design makes
it possible to scale the code rate along with the capacity of
the channel, and their simplicity makes them easy to train.
We have shown the usefulness of these NN single-user codes
in operating close to the corner points of the MAC capacity
region, which is only possible when arbitrary rate codes are
available. Our iterative SIC scheme markedly reduces the
BER of decoding each user, which makes it possible to add
additional users without significantly impacting the goodputs
of existing users. Future work will be to incorporate more
sophisticated architectures to reduce the single-user BER,
scaling the MAC to more users, and using arbitrary rate codes
to investigate other multiuser channels.

REFERENCES

[1] T. Erpek, T. J. O’Shea, and T. C. Clancy, “Learning a Physical Layer
Scheme for the MIMO Interference Channel,” in 2018 IEEE Interna-
tional Conference on Communications (ICC), May 2018.

[2] D. Wu, M. Nekovee, and Y. Wang, “Deep Learning-Based Autoencoder
for m-User Wireless Interference Channel Physical Layer Design,” IEEE
Access, vol. 8, 2020.

[3] R. K. Mishra, K. Chahine, H. Kim, S. Jafar, and S. Vishwanath, “Dis-
tributed Interference Alignment for K-user Interference Channels via
Deep Learning,” in 2021 IEEE International Symposium on Information
Theory (ISIT), Jul. 2021.

[4] K. Chahine, N. Ye, and H. Kim, “DeepIC: Coding for Interference
Channels via Deep Learning,” Aug. 2021, arXiv: 2108.06028.

[5] S. Dörner, S. Cammerer, J. Hoydis, and S. t. Brink, “Deep Learning
Based Communication Over the Air,” IEEE Journal of Selected Topics
in Signal Processing, vol. 12, no. 1, Feb. 2018.

[6] T. J. O’Shea, T. Roy, N. West, and B. C. Hilburn, “Physical Layer Com-
munications System Design Over-the-Air Using Adversarial Networks,”
in 2018 26th European Signal Processing Conference (EUSIPCO), Sep.
2018.

[7] Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, and P. Viswanath,
“Joint Channel Coding and Modulation via Deep Learning,” in 2020
IEEE SPAWC, May 2020.

[8] B. Zhu, J. Wang, L. He, and J. Song, “Joint Transceiver Optimization for
Wireless Communication PHY Using Neural Network,” IEEE Journal
on Selected Areas in Communications, vol. 37, no. 6, Jun. 2019.

[9] H. Kim, Y. Jiang, R. Rana, S. Kannan, S. Oh, and P. Viswanath,
“Communication Algorithms via Deep Learning,” May 2018, arXiv:
1805.09317.

[10] Y. Jiang, S. Kannan, H. Kim, S. Oh, H. Asnani, and P. Viswanath,
“DEEPTURBO: Deep Turbo Decoder,” in 2019 IEEE SPAWC, Jul. 2019.

[11] M. V. Jamali, X. Liu, A. V. Makkuva, H. Mahdavifar, S. Oh, and
P. Viswanath, “Reed-Muller Subcodes: Machine Learning-Aided Design
of Efficient Soft Recursive Decoding,” in 2021 IEEE International
Symposium on Information Theory (ISIT), Jul. 2021.

[12] Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, and P. Viswanath,
“Turbo Autoencoder: Deep learning based channel codes for point-
to-point communication channels,” in Advances in Neural Information
Processing Systems, vol. 32, 2019.

[13] A. V. Makkuva, X. Liu, M. V. Jamali, H. Mahdavifar, S. Oh, and
P. Viswanath, “KO codes: inventing nonlinear encoding and decoding
for reliable wireless communication via deep-learning,” in Proceedings
of the 38th International Conference on Machine Learning, Jul. 2021.

[14] T. O’Shea and J. Hoydis, “An Introduction to Deep Learning for the
Physical Layer,” IEEE Transactions on Cognitive Communications and
Networking, vol. 3, no. 4, Dec. 2017.

[15] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,” in Proceedings
of the 32nd International Conference on Machine Learning, Jun. 2015.

